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 

Abstract— Appropriate navigation strategies should be 

developed to overcome the current shipping industrial challenges 

under emission control based energy efficiency measures. 

Effective navigation strategies should be based on accurate ship 

performance and navigation information, therefore various 

onboard data handling systems are installed on ships to collect 

large-scale data sets.  Ship performance and navigation data that 

are collected to develop such navigation strategies can be an 

integrated part of the ship energy efficiency management plan 

(SEEMP). Hence, the SEEMP with various navigation strategies 

can play an important part of e-navigation under modern 

integrated bridge systems.  This study proposes a machine 

intelligence (MI) based data handling framework for ship 

performance and navigation data to improve the quality of the 

respective navigation strategies.  The prosed framework is 

divided into two main sections of pre and post processing. The 

data pre-processing is an onboard application that consists of 

sensor faults detection, data classification and data compression 

steps. The data post processing is a shore-based application (i.e. 

in data centers) and that consists of data expansion, integrity 

verification and data regression steps. Finally, a ship 

performance and navigation data set of a selected vessel is 

analyzed through the proposed framework and successful results 

are presented in this study. 

 

Index Terms— Shipping industry, big data, data handling, 

energy efficiency, emission control, machine intelligence. 

 

I. INTRODUCTION  

A. Navigation Strategies 

 global vision for an international collaborative 

communication network to improve the safety and 

efficiency considerations in shipping is proposed under 

"e-navigation" [1]. It is expected that this framework also 

facilitates towards standardized ship navigation platforms, 

including integrated bridge systems (IBSs), to overcome the 

present energy efficiency and emission control challenges. 

Appropriate navigation strategies under IBSs should be 
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developed to overcome such challenges especially under 

emission control areas (ECAs) as a part of the e-navigation 

framework. One should note that e-navigation is classified as a 

user driven concept rather than a system driven concept at the 

present stage. However, modern ship navigation platforms 

with intelligent decision support capabilities [2], where some 

limitations on human subjective factors are enforced, are also 

considered under the same [3]. It is expected that these 

intelligent decision support capabilities eventually influence 

on various ship navigation strategies as a part of e-Navigation. 

Those facilities not only enhance the navigation safety but also 

improve the operational efficiency in shipping [4]. Ship 

Navigation strategies are often developed under safety and 

efficiency considerations. A number of studies are conducted 

on the safety related ship navigation strategies, especially 

under rough weather conditions ([5], and [6]). Even though the 

concept of energy efficient ships is highlighted in the recent 

years, the operational efficiency related navigation strategies 

are relatively novel concepts for the shipping industry. 

B. Energy Efficient Ships 

The International Maritime Organization (IMO) and other 

respective maritime authorities introduced various emission 

control (i.e. CO2, SOx, and NOx) regulations to improve 

energy efficiency in shipping. Furthermore, tighter emission 

control measures for vessels are introduced in designated 

emission control areas (ECAs) by the respective maritime 

authorities [7]. These emission control regulations inforce to 

implement various energy efficiency measures under the Ship 

Energy Efficiency Management Plan (SEEMP). Hence, the 

SEEMP can facilitate to develop appropriate navigation 

strategies to accommodate such emission control based energy 

efficiency measures as a part of modern IBSs. Adequate ship 

performance and navigation data should be collected under 

IBSs to develop such ship navigation strategies.  Furthermore, 

effective navigation strategies are based on the quality of ship 

performance and navigation information that are extracted 

from the data sets. One should note that the data handling 

processes often influence on the quality of ship performance 

and navigation data. Modern IBSs are facilitated by the 

required sensors and data acquisition systems (DAQs) to 

support such data handling processes.  

C. Integrated Bridge Systems 

Modern IBSs consist of two separate networks of navigation 

and automation systems to satisfy various classification 

societies' requirements. This separate network architecture 

further improves the reliability and safety considerations of 

ship navigation. In general, navigation systems consist of 
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radar, conning, electronic chart display and information 

system (ECDIS), autopilot system and other related sensors. 

Hence, a comprehensive overview of ship navigation 

conditions can be observed. In general, the automation 

systems consist of a power management architecture for 

engine and propulsion control systems with respect to various 

engine room operations. Additional units of bilge and ballast 

control, HVAC and alarm & monitoring systems can also be a 

part of these automation systems. Hence, a comprehensive 

overview of ship performance conditions can be also 

observed.  

Both systems facilitate to obtain ship performance and 

navigation data and that data should be visualized. 

appropriately. Such data visualization methods can be used to 

observe optimal ship performance and navigation conditions. 

Optimal performance and navigation conditions can be 

compared with the vessel current conditions in IBSs to 

develop decision support facilities. That process may identify 

energy efficient operational conditions of vessels under the 

SEEMP through ship performance and navigation data. Those 

facilities eventually develop the respective navigation 

strategies of ship energy efficiency. However, the same ship 

performance and navigation information creates large-scale 

data sources and introduces additional data handling 

challenges in IBSs.  

II. PERFORMANCE & NAVIGATION DATA 

A. Data Handling 

These data handling issues can be categorized as internal and 

external challenges in shipping. The internal challenges relate 

to the data quality and quantity. Large scale data sets of ship 

performance and navigation information collected by the 

respective sensors and data acquisition systems create both 

quality and quantity issues. The quantity issues are often 

addressed under data management applications. The data 

quality issues are the focus of this study and that should be 

addressed under real-time data handling platforms of IBSs. 

The external challenges mainly relate to data communication 

and storage issues, where the cost effectiveness of handling 

large data sets should be considered. One should note that the 

data quantity issues influence as an external challenge in data 

handling process in some situations. Therefore, possible 

solutions to such situations should be considered under the 

same data handling framework.  However, both internal and 

external challenges in handling large-scale data sets are often 

categorized as "big data challenges" [8-9] in the recent 

literature.  

B. Recent Studies 

Similar industrial challenges encountered in handling ship 

performance and navigation data (i.e. collected under onboard 

sensors and data acquisition systems) are presented under 

various data analyses.  Data analysis of operational energy 

efficiency in an inland river ship is presented in [11]. A 

performance evaluation approach for a steam-propelled 

merchant ship is presented by collecting the respective data in 

[12]. Several data analyses on fuel usage for ship operations 

are presented by [13-15]. Statistical analysis performed on 

data collected from sea trials of a small training ship is 

presented in [16]. Full-scale data analysis for a passenger ferry 

to evaluate vessel performance is presented in [17]. 

Furthermore, additional studies are integrated with port 

performance evaluation systems in [18]. However, these 

studies ignore the internal and external challenges that are 

associated with the respective data sets. If such challenges in 

the data handling process have not been resolved, properly, 

that can degrade the information extracted from ship 

performance and navigation data.  Hence, an appropriate 

onboard data-handling framework with various data analytics 

to overcome such data handling challenges in shipping is 

proposed as the main contribution of this study. Even though 

there are several data handling approaches suggested for 

shipping industrial applications [19], a proper guide with the 

required steps in both onboard and onshore has not been 

presented. Therefore, such approaches have often been 

considered as trial and error procedures. The proposed data 

handling framework consists of a proper guide with the 

required steps (i.e. data analytics) to overcome data handling 

challenges in shipping. Even though similar data analytics has 

been presented in the recent literature, it has not been 

presented in a proper structure to implement as both onboard 

and onshore applications.  

C. Data Analytics 

An improved data handling framework can make appropriate 

navigation strategies towards energy efficient ships [10]. The 

proposed framework consists of several steps (i.e. data 

analytics) to handle large scale data sets in real-time and 

develop more cost-effective solutions in shipping. Such data 

analytics can be used under IBSs and data centers to overcome 

the respective data handling challenges in shipping. Data 

analytics consist of an analysis methodology that observes 

hidden data patterns, clusters, correlations and other useful 

information of the respective data sets.  Even though a 

majority of data analysis methods are based on various 

empirical ship performance and navigation models [20], these 

conventional mathematical models often fail to handle large-

scale data sets due to system-model uncertainties, sensor noise 

and fault conditions and complex parameter interactions. 

Hence, such models may not adapt and predict actual ship 

performance and navigation information and that can 

influence the validity of ship navigation strategies.  
 

Machine intelligence (MI) based data analytics are proposed 

in this study to overcome such model related challenges. One 

should note that such MI applications are often associated with 

statistical analysis techniques and that are often implemented 

by other transportation systems with various sensors, data 

acquisition and communication networks to overcome the 

similar challenges. Furthermore, superior data analytics are 

demanded by modern transportation systems to preserve the 

required navigation safety and efficiency levels in the recent 

years. Similarly, this combination (i.e. statistical data analyses 

and MI techniques) can address various fundamental handling 

challenges in large-scale data sets in shipping. The improved 

data sets lead towards better ship navigation strategies with 

energy efficient operating conditions.  
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Figure 1.  Data handling framework 

 

III. MACHINE INTELLIGENCE 

A. Data Handling Framework 

The proposed data handling framework with ship performance 

and navigation data is presented in Figure 1. This framework 

is supported by both top down and bottom up approaches. The 

top down approach is facilitated by e-navigation environment 

with AIS data. e-navigation framework enables the transfer of 

ship performance and navigation data among ships and shore 

based centers, where the respective decision and action 

information of vessels can be extracted. That further enhances 

the   proposed data handling framework by delivering timely,   

reliable, and accurate information of vessels. The bottom up 

approach is facilitated by integrated bridge systems with 

onboard sensors and data acquisition systems. Hence, ship 

performance and navigation data collected by both top down 

and bottom approaches support the proposed data handling 

framework. That consists of various MI application layers (i.e. 

data analytics) to overcome the respective data handling 

challenges. Each step of the data handling framework, 

appropriate MI applications are introduced as further 

described in Figure 1. 

 Firstly, ship performance and navigation data are collected 

from various onboard sensors and data acquisition systems in 

the vessel. Then, these sensor data (i.e. the ship performance 

and navigation parameters) are transferred through a data pre-

process. The pre-processed data are communicated through 

data transmitters (i.e. onboard the vessel) in much smaller 

improved data sets. The pre-process is further divided into 

three sections: sensor fault detection, data classification and 

data compression. The same data sets are obtained by shore 

based data centers through data receivers. Then, these data sets 

are handled through a data post-process and accommodated in 

data storage facilities as required. The post-process is further 

divided into three sections: data expansion,  data integrity, and 

data regression.   

The pre-post processed data are used for various decision 

supporting features especially under energy efficiency and 

system reliability applications of shipping. The energy 

efficiency applications consist of identifying optimal vessel 

operating conditions to reduce overall fuel consumption. The 

system reliability applications consist of identifying the health 

conditions of onboard systems and that information can be 

used to develop optimal maintenance actions to reduce the 

system operating costs. However, both applications should be 

supported by appropriate visualization methods.   

B. Data Visualization 

The speed-power plot with respect to relative wind conditions 

of a selected vessel is visualized in Figure 2. The vessel is a 

bulk carrier with following particulars: ship length: 225 (m), 

beam: 32.29 (m), gross tonnage: 38.889 (tons), deadweight at 

max draft: 72.562 (tons). That is powered by 2 stroke main 

engine (ME) with maximum continuous rating (MCR) of 7564 

(kW) at the shaft rotational speed of 105 (rpm). It has a fixed 

pitch propeller diameter of 6.20 (m) with 4 blades [21]. The 

respective speed power data set is standardized in the figure, 

where the mean values are subtracted from each parameter and 

the variance values set to be 1.0 (i.e. each parameter with an 

equal variance). This approach (i.e. data scaling) is taken as a 

part of principal component analysis (PCA) to avoid the 

situations such as: the parameters with large variance values 

make bigger contributions on the data analysis. Therefore, 

each parameter can have a same variance and influence 

equally in this data analysis. Furthermore, following 

observations are also noted with respect to the same speed-

power plot. The vessel is losing its speeds due to high relative 

wind conditions for the same engine power levels. High wind 

conditions create rough sea conditions, therefore ship 

resistance increases, and ship speed decreases. Low speed 

maneuvering situations of the vessel are removed from this 

data set to improve the visibility of ship performance and 

navigation information [22]. Hence, such data visualization 

methods can play an important role in a data handling 
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 framework. 

C. Sensor Fault Detection 

The first step in data pre-processing is sensor fault detection. 

Detecting sensor fault situations and removing those erroneous 

data regions from the ship performance and navigation data 

are considered in this step. Firstly, this study proposes to 

identify these sensor fault situations by observing the mean 

and variance values of each parameter. Each parameter in the 

ship performance and navigation data set may have a range, 

where the parameter can vary e.g. ship speed varies from 0 

(Knots) to 20 (Knots) in the selected vessel. Therefore, if the 

ship speed is going beyond this range that situation categories 

as a sensor fault situation. Secondly, other sensor fault 

situations are identified by the covariance values among the 

respective parameters. e.g. a clear relationship among ship 

speed, power and wind speed can be observed in Figure 2 

under the respective principal components (PCs).  

PCA is a non-parametric method for extracting relevant 

information from various data sets. A new basis for the 

respective data set is derived from the original basis (i.e. the 

respective parameters) with a linear combination of the 

original basis. This new basis is the respective principal 

components of the ship speed power data set and presented as 

two vectors in Figure 2. That PCA structure represents the 

largest independent covariance directions of the same data set. 

These two vectors represent an approximately linear 

relationship between the speed power values of the vessel. The 

lengths of these two vectors relate to the covariance values of 

the vessel speed power parameters. Therefore, such linear 

relationships among ship performance and navigation 

parameters can be used to identify sensor fault situations. e.g. 

any data point that represents a contradictory relationship 

between these speed and power principle components can be 

categorized as a sensor fault situation (see Figure 2). 

The same covariance values (i.e. PCs) can be developed for 

a high dimensional data set and that represent complex 

interactions among ship performance and navigation 

parameters [23]. Such information (i.e. the PC structure) can 

extensively be used to identify various sensor fault situations 

by observing unusual parameter behavior. One should note 

that that some erroneous data conditions are related to DAQs 

failures that are also recorded as sensor faults. However, both 

 

 
 

Fig. 3. Ship performance and navigation parameters with sensor faults.   
 

 
 

Fig. 2.  Mod. Speed Power Plot with PCA 
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fault types can be identified by the proposed approach. The 

proposed framework is implemented on a 10 dimensional data 

set of  ship performance and navigation parameters and the 

results are presented in Figure 3. The respective parameters 

(i.e. 10 parameters) are presented in the top 10 plots and the 

detected faults situations (i.e. fault alarm) are presented in the 

bottom plot. One should note that these plots are presented 

with respect to the number (No.) of data points (i.e. sample 

number) and the time interval between two consecutive data 

points is 15 (min). Two sensor faults situations are detected in 

this data set and denoted by two windows. 

In the first sensor fault situation, several parameters (main 

engine (ME) power, ME fuel consumption, STW, shaft speed, 

and auxiliary engine fuel consumption) are associated with 

some unusual behavior (i.e. a sudden drop in the parameter 

value). In the second sensor fault situation (i.e. a data 

interval), several parameters (i.e. average draft, trim) are 

associated with unusual behavior and the auxiliary engine fuel 

consumption has increased, considerably. Therefore, such 

situations are detected as sensor fault situations. Various 

relationships among ship performance and navigation 

parameters should be investigated under the PCA (i.e. a higher 

dimensional space) and that knowledge can used to identify 

complex sensor fault situations [24] as presented in this study. 

D. Data Classification 

Data classification of ship performance and navigation 

information is considered as the next step of this framework. 

A marine engine centered data classification approach as the 

basis to develop the respective navigation strategies is 

considered. Therefore, the large scale data sets are classified 

into several sub-sets with respect to engine operating regions 

of the vessel. Other parameters in ship performance and 

navigation data are also divided along the same classification 

borders. Ship performance and navigation data can be 

visualized appropriately by this method as small data sets. The 

results of the proposed data classification approach are 

presented in Figure 4. The figure represents an engine 

propeller combinator diagram, where main engine power (in 

log scale) and shaft speed (rpm) values are presented. The 

most frequent engine operating regions are identified as A, B, 

and C by Gaussian mixture models (GMMs) with an 

expectation maximization (EM) algorithm. The GMM 

approach is implemented to cluster the respective ship 

performance and navigation data and the information is also 

used to identify the respective operating regions in the main 

engine. Furthermore, the EM algorithm is implemented to 

calculate the respective parameters of the GMMs [25]. One 

should note that GMMs are denoted as multivariate Gaussian 

distributions with the respective mean and covariance values. 

Therefore, the respective contours of the multivariate 

Gaussian distributions are denoted by ellipse in the same 

figure. 

E. Data Compression and Expansion 

The last step in data pre-processing is the data compression 

step and the first step in data post-processing is the data 

expansion step. One should note that the dimensionality of the 

classified ship performance and navigation data set is reduced 

[26] by the data compression step.  Data region A classified 

under the previous step (see Figure 4) is considered for these 

compression and expansion steps. The respective parameters 

in ship navigation and performance data (i.e. average (avg.) 

draft, speed through water (STW), ME power, engine shaft 

speed, ME fuel consumption, speed over ground (SOG), trim, 

relative wind speed and wind direction) are also classified 

along the same engine operating regions.  

An autoencoder network is proposed for these two steps 

(i.e. data compression and expansion) [27]. Autoencoder is an 

unsupervised learning method with a feed-forward neural 

network, which is also categorized as a deep learning 

approach [28-31]. The main objective of designing an 

autoencoder is to recreate the same input at the output of the 

neural network. A hidden layer that compresses/expands the 

respective data set is located between the input and output 

layers of an autoencoder. The input data set is compressed and 

transmitted by the first hidden layer of the autoencoder. 

Hence, the new data set consists of a linear combination of the 

measured parameters of ship performance and navigation 

information. The comparison accuracy between the input and 

output data sets is used to evaluate the success of the network. 

The number of parameters in this new data set is adjusted in 

accordance with the hidden layer of the autoencoder. 

Therefore, the number of nodes in the hidden layer should 

select appropriately, where the important variance values in 

the data set are preserved. The same PCA structure that is 

developed in the previous step can be used as the data 

compression and expansion functions in the autoencoder. The 

compressed data sets are transmitted through a satellite 

network to data centers for data storage and further analyses. 

 
 
Fig. 4. Engine Propeller Combinator Diagram with GMMs and EM algorithm   
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The compressed data set is received and expanded by the 

second hidden layer of the autoencoder. The input to the 

encoder is the previously classified data set (i.e. data region A) 

in this situation. The output of the autoencoder is the estimated 

ship performance and navigation parameters. The respective 

data compression and expansion results are presented in 

Figures 5 and 6. The actual and estimated ship performance 

and navigation parameters have some variations (i.e. data 

errors) and the autoencoder performance is evaluated with 

respect to those data variations.  

The input and output data sets of an autoencoder as 

statistical distributions are presented in Figures 5 and 6. The 

first column from the left represents the statistical distributions 

of actual ship performance and navigation parameters. The 

second column from the left represents the same standardized 

parameters, which are the inputs to the autoencoder. The third 

column from the left represents the compressed data set, i.e. 

the projected data set along the respective principle 

components (PCs), and that is transferred through 

communication networks.  Even though the all new 

parameters are presented in this situation, these parameters 

that relate to the top PCs should be selected, appropriately to 

transfer through communication networks. The forth column 

from the left of the figure represents the parameters (i.e. 

estimated parameters) of the expanded data set, which is the 

output of the autoencoder. One should note that the 

compressed data set along with PCA information should be 

transmitted to data center to expand the data set into its 

original format. Even though the pre and post-processing steps 

may have the data sets with the same sizes, that may not be a 

mandatory requirement for this data handling framework. 

However, that information can be used to evaluate the 

autoencoder performance.  

Finally, the respective input and output parameters of ship 

performance and navigation data are compared to evaluate the 

autoencoder performance. Considering the second (i.e. the 

inputs) and forth (i.e. the outputs) columns of Figure 5, the 

following conclusions are derived. The input and output 

statistical distributions of the respective parameters are 

approximately similar in a number of situations. However, 

some parameters may not recover, completely due the data 

compression and expansion steps of the autoencoder. A data 

set with 9 ship performance and navigation parameters is 

considered and  compressed by the autoencoder (i.e. the top 7 

PCs) and the compressed data set consists of 99.5 % of actual 

ship performance and navigation information. The data 

compression ratio in this situation is 22% (i.e. 7/9 parameters) 

and that preserves 99.5% of the respective ship performance 

and navigation information. One should note that the 

respective information percentage (i.e. 99.5%) relates to the 

top  PCs [27]. Therefore, the top PCs should be selected, 

appropriately to preserve the useful information in ship 

performance and navigation data as a necessary step for the 

data compression. The actual and estimated parameters of ship 

performance and navigation information with respect to the 

number (No.) of data points are presented in Figure 6. These 

data points are not presented in a continuous time line, 

because some erroneous data intervals are removed from this 

data analysis, initially.   

F. Data Integrity Verification 

The next step of data post-processing is integrity verification. 

A sub-set of ship performance and navigation data is always 

transferred by ships as automatic identification system (AIS) 

 

 
Fig. 5. The input and output data sets of  an autoencoder as statistical distributions. 
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messages. AIS messages have often been used by vessel 

traffic services (VTS) and other maritime authorities for 

identifying and locating vessels. Similarly, that information is 

also exchanged electronically through other ships, AIS base 

stations, and satellites nearby. This information is also 

possible to obtain by shore based data centers to improve the 

integrity of ship performance and navigation data that are 

collected by the onboard systems. Furthermore, additional data 

sources (i.e. recorded weather data) can also be used to 

improve the data integrity. One should note that any erroneous 

data regions that are introduced by the communication 

networks can be identified by this step at shore based data 

centers.  

G. Data Regression 

The last step of this data handling framework is data 

regression. The estimated data points of ship performance and 

navigation information are used to calculate the actual 

parameter values of ship performance and navigation data. 

This step may consist of various smoothing algorithms to 

reduce the fluctuations of the estimated data points. 

Furthermore, this step can improve the information visibility 

among the respective parameters and facilitate to understand 

optimal ship performance and navigation conditions. That 

information can also be used to evaluate ship energy 

efficiency under various navigation and operational 

conditions. 

IV. CONCLUSION 

The main objective of this study is to develop an appropriate 

onboard data-handling framework with various data analytics 

to overcome current data handling challenges in shipping. The 

proposed data handling framework consists of two main 

sections of pre and post processing. The data pre-processing 

section is an onboard application and that consists of sensor 

faults detection, data classification and data compression 

steps. The pre‐process can improve the quality and reduce the 

quantity of ship performance and navigation data. Hence, the 

pre‐process can reduce the computational burden on the 

onboard crew, where improved and reduced data sets can be 

delivered the shore based data centers.  The data post 

processing section is a shore based application (i.e. in data 

centers) and that consists of data expansion, integrity 

verification and data regression steps. The post‐process can 

further improve the quality and visualize the information of 

the same. The post‐process can reduce the complexities on 

handling large‐scale data sets, where high skilled crew to 

analyze such data sets should not always be presented in data 

centers. 

Various MI applications such as PCA, GMMs with an EM 

algorithm and autoencoders are proposed and implemented in 

various sections of the data handling framework. One should 

note that such MI techniques can introduce special features of 

self‐learning (i.e. data clusters and PCs), self-cleaning (i.e. 

sensor fault detection, data regression & integrity verification), 

self‐compression & expansion (i.e. data compression and 

expansion) into the respective data sets under the proposed 

data handling framework. Even though various MI techniques 

are presented in the literature, this study presents an 

appropriate structure to implement those techniques and 

improve information visualization.   

 The improved data visualization can be used to identify 

optimal ship performance and navigation conditions from the 

respective data. Those conditions can be used to develop 

appropriate navigation strategies for energy efficiency 

operational conditions of ships under the SEEMP. Hence, the 

proposed framework can handle such large-scale data sets as a 

big data solution and improve the outcome of the respective 

navigation strategies. These energy efficient navigation 

strategies [32] with intelligent decision support capabilities 

[33] can eventually be a part of the e-navigation strategy at the 

global level and the SEEMP [34] at the local level (i.e. in the 

vessel). 

 
Fig. 6. The input and output data sets of an autoencoder as No. of data points 
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